
Understanding the Technique of Data Extraction
from Deep Web

Manoj D. Swami#, Gopal Sonune#, Dr. B.B. Meshram*
#M.Tech (NIMS)

VJTI, Matunga, Mumbai.
*HOD, Dept. of Computer Technology

VJTI, Matunga, Mumbai.

Abstract— World Wide Web is developing rapidly, there are
large number of Web databases available for users to access.
This fast development of the World Wide Web has changed
the way in which information is managed and accessed. So the
Web can be divided into the Surface Web and the Deep Web.
Surface Web refers to the Web pages that are static and
linked to other pages, while Deep Web refers to the Web pages
created dynamically as the result of specific search. This
literature paper focuses on querying the Deep Web.
Deep Web refers to the databases accessible through query
interfaces on the World Wide Web. A Deep Web query system
presents to users a single interface for querying multiple Web
databases in a domain such as airline booking and extracts the
relevant information from different web databases sources,
and then returns results for users.

Keywords— Deep Web, Surface Web, Deep web tool query,
HiWe system.

I. INTRODUCTION

The Deep Web refers to the accessibility of different
web databases through query interfaces on the World Wide
Web. A Deep Web query tool presents a single interface to
users, and upon submission of a query via its interface, the
tool submits equivalent queries to many hidden databases
via front-end query interfaces and then extracts and merges
the results received from different web-sources. The
advantage of this tool in the airline domain for example, is
to prevent the users querying from each airline among
many airline websites which is time consuming; the second
advantage is that the tool will present a simple and easy
query interface to users and collect data from hidden
airlines databases and then return a single interface of
results for user-processing.

A Deep Web Tool usually has three components,
Interface interpretation, Query formulation and Result
interpretation.

Interface interpretation: this component produces an
integrated interface over the query interfaces of web
databases and analyzes the different web pages,
concentrating on identifying the sections of the web pages
that contain the relevant form (e.g. booking services,
Payment services). Once the relevant sections are identified,
relevant page attributes (or HTML tags) need to be
identified. Different page attributes then need to be
semantically mapped. A database or file template can be
created to store all those page attributes.
Query formulation part will involve schema integration,
formulating the query to be sent to the various web

resources. The query formulation part can be developed
separately from the result interpretation part.
Result interpretation extracts the results from pages
returned by different web databases then merges them
together into global interface for the utilization by users.
This part requires the appropriate methods for data
extractions and merging. The Deep Web domain is vast;
this paper concentrates on result interpretation.

II. OVERVIEW

The remainder of this literature paper is organized as
follows. Section 3 discusses the related work of response
page processing including data error and duplication
management. In section 4 we discuss the result processing
approach in order to extract the relevant pieces of
information out of returned pages. Section 5 presents
methods use for data extraction in the Deep Web. Section 6
discusses data integration into a unified interface. Finally,
section 7 concludes the paper and gives an overall
summary.

III. DISCUSSION

 3.1. Response Page Processing from the Deep Web
Once a query is sent to relevant websites, the next step is

to retrieve information from those target sites. Several
cases are possible.
3.1.1 Results display by pieces

Handling of results displayed by piecemeal is discussed
in [1]. In this case, the web site returns a bit at a time,
showing perhaps 2 or 4 per page. The system will provide a
button or a link URL to get to next page until the last page
is reached. One approach [1] treats all the consecutive next
pages from the returned page as part of one single
document by concatenating all the pages into one page. The
system activates this process if the returned page contains a
button or link indicating next or more. In this way, the
system constructs a logical page containing all the data.
3.1.2 Retrieving all results with default query in the case of
small database

In the default query, the system may have retrieved all or
least of significant percentage of the data before submitting
all queries; the reason behind is, many forms have a default
query that contains all data available from the website.
Stephen W. Liddle, David W. Embley, Del T. Scott and Sai
Ho Yau [1] discussed this issue in depth. The problem
found in a default query (with a default query the user is
not necessarily selecting or filling fields with information)
is that, sometimes it does not retrieving all data and every
set of data returned may be some particular subset of the

Manoj D. Swami et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (3) , 2013, 533-537

www.ijcsit.com 533

overall database, in this case the problem is solved by
sampling the database and finding the data not already
returned by the initial default query, the user will continue
the process of submitting the query until as much data as
possible is retrieved. If the additional queries all return data
that is equal to or subsumed by the data returned for the
initial default query, we need not query with all
combinations.
3.1.3 Query submitted with a field missing or No-Result
Found

For a query submitted with a field missing, or for no-
result found, the system must automatically detect the
problem and solve it. In the case that a required field is
missing, the system will search for a message such as
“Required field is missing” this kind of error requires the
intervention of the user using the system. The user will be
required to fill the relevant fields of the interface and
submit again the query to the system. In the case that no
result can be displayed to the user query, the system could
search for message like “No matching result could be
found”. Both error cases have been discussed in [1]. It is
more reliable to observe that the size of the information
returned after removing miscellaneous header and footer
information is normally very small if there was an error-
usually a constant small value for all queries that return no
result [1].
3.1.4 Errors Handling

During the response page processing from the Deep Web,
the following errors may be encountered:

• In the case of network failure, a server down, or HTTP
errors, the system will notify the user by an error message
and the type of error and then abort the current operation

• The errors that might be in a HTML page result might
be easily recognized automatically like HTTP 404. Other
error messages are hard to recognize, this may be
embedded within a series of tables, frames or other types of
HTML division. Users can sometimes understand the
messages, but automated understanding is very hard.

• The results coming from a HTML page may contain
duplication of information, which we should discard.
Section 3.2 shows how the system detects and solves the
duplication error

• In certain circumstances, the server may require
authorization information for logging on to the system.

3.2. Detection and removing of Result Duplication

Once the query is sent to the relevant web-sources, the
data retrieved is placed into a repository discussed in [1, 3].
Data retrieved for multiple submissions of a form may
contain duplication; the system eliminates this duplication
of data before placing the result in the repository by using
the detection mechanism described in [2], which is highly
effective for finding duplicate sentences over a large set of
textual documents. The system analyses systematically the
data returned from a Deep Web query then calculates the
hash value for each result and then removes the duplication
[1]. The data retrieved from behind web forms is usually
displayed as paragraphs separated by the HTML paragraph
tag <p>, as rows in a table separated by <tr> </tr> tags, or
as blocks of data separated by the <hr> horizontal rule tag.

Stephen W. Liddle, David W. Embley, Del T. Scott and
Sai Ho Yau in [1] proposed a way of dealing with a special
tag called the sentence boundary separator tag in order to
adapt the copy detection system for collection of records.
During the duplication detection process, the system inserts
this special tag into a retrieved web document around
certain HTML tags that most likely delimit the duplicate
record.

The tags chosen for this treatment include </tr>, <hr>,
<p>, </table>, </blockquote> and </html>. If none of the
above tags except </html> appears in the document, the
whole document is considered to be a single record. The
idea above of handling duplicate recognition and
elimination has been discussed in more detail in [1].

IV. RESULTS PROCESSING

This section deals with how the results are being
processed from a web form once the query has been
submitted by the user. A parser [6] will analyze different
formats of data page returned by web databases in order to
extract the relevant pieces of information out of forms.
Once extraction of the data from different web-sites is done,
next step is to merge those data into a single response page;
this idea is detailed in section 5 called “Data Integration”
Result processing can be split into three components, which
are:

• Result extraction: this component will identify and
extract the relevant results from the response pages
returned by web databases

• Result annotation: this component will append the
proper semantics for the extracted result

• Result merging: merge results extracted from different
web databases into a single response page.

V. WEB DATA EXTRACTION

Web data extraction from the Deep Web has been
tackled by many people in related work e.g. [5]; it seems
that more work must still be done in this area. Raghavan, S.
and Garcia Molina at Stanford University [3, 4] developed
the “Hidden Web Exposer (HiWe)” system that builds a
Deep Web crawler that automatically parses, processes and
interacts with form-based search interfaces. Because of the
formidable challenges to a fully automatic process, HiWE
assumes that crawls will be domain specific and human
assisted. Although HiWE must start with a user filling in
the form for a search task, HiWE learns from successfully
extracting information and updates the task description
database as it crawls.

Besides an operational model of a Hidden Web Crawler,
other more interesting contributions are:

• The label matching component used for matching
labels entered on the form to those labels in the Label
Value Set table.

• Internal form representation, the crawler breaks up a
query form into several information pieces. The form is
represented by F= ({E1… En}, S, M) where {E1… En}
represents a set of n elements, S is the submission
information associated with the form, and M is metadata
information about the form. Each element of the set E has
two pieces of information called domain Dom (Ei) and

Manoj D. Swami et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (3) , 2013, 533-537

www.ijcsit.com 534

Label (Ei). Domain refers to a set of values Ei can take on
and Label is the description associated with a domain value.

• Task-specific database, the HiWE crawler uses a task
specific database. This database stores all relevant
information that helps the crawler to formulated search
queries relevant to particular task.

• Response analysis, this component stores the page
result in the crawler’s repository.

Similar work has been discussed by S. W. Liddle et al
[1]. They proposed a way to extract the data behind web
forms. Their main contribution reveals how to retrieve the
data behind a particular HTML form; how to process a
result page returned by a form submission. This includes,
for example, error detection.

VI. DATA INTEGRATION

Data integration is the problem of combining data from
various web databases sources, and providing users with a
unified view of data [15, 16, and 17]. One of the main tasks
in designing a data integration system is to establish the
mapping or relation between the web database sources and
a global schema, which must be taken into account in
formalizing a data integration system.

Many people have explored this point of deep web data
integration and many solutions are discussed. However
they state that the challenging part remains “schema
matching” for discovering semantic correspondences of
attributes across heterogeneous sources. Bin He and Kevin
Chen-Chuan Chang [7] addressed the “problem of
automatic matching process” which integrated the DCM
(Dual Correlation Mining Algorithm) framework with an
automatic interface extractor. Such system integration turns
out to be nontrivial– As automatic interface extraction
cannot be perfect, it will introduce erroneous extraction,
which challenges the performance of the subsequent
matching algorithm. However, Stephen W. Liddle, David
W. Embley, Del T. Scott and Sai Ho Yau [1] proposed that
“it is necessary to automate extraction and integrate
information data from different web databases”.

Related work of data integration has been discussed by
S.Raghavan and H. Garcia- Molina [3, 4]; their Crawling
the Hidden Web gives more significant contribution to the
data integration in the development of Deep Web data
integration.

Maurizio Lenzerini [15] discussed in his “theory of data
integration” the main components of a data integration
system that are a Global Schema, web databases Sources
and mapping. He formalizes a data integration system Ι in a
triple (G, S, M) where G is the global schema, expressed in
a language LG over an alphabet AG; S is the database
sources, expressed in a language LS over an alphabet AS;
and M is the mapping between G and S, constituted by a set
of assertions of the forms {qS, qG} or {qG; qS} where qS
and qG represent two queries respectively over the source S
and over the global schema G.

VII. SUGGESTED WORK

Here, the goal is to extract the data from various hidden
web databases and this data in integrated form will be
stored in large repository with no duplicate records.

Search Query Interface is considered as an entrance to
the websites that are powered by backend databases. User
can find the desired information by submitting the queries
to these interfaces. These queries are constructed as SQL
queries to fetch data from hidden sources and send it back
to user with desired results. The proposed approach is
presented in four phases. Firstly, different query interfaces
are analyzed to select the attribute for submission. In the
second phase, queries are submitted to interfaces. Third
phase extracts the data by identifying the templates and tag
structures. Fourth phase integrates the data into one
repository with all duplicate records removed. There can be
various methods to submit queries.
7.1 Different Query Methods:

Blank query:
Blank query means no field is selected while submitting

query to the interface form. This will extract the whole
database at once. In this case, we can leave all the fields
blank and press the submit button. But it is seen that most
of the sites don’t accept this kind of input. Many sites
contain restrictions like “please select city” or “please
select any one option”. Here, in this case city is mandatory
field.

Query with all combinations:
Second type of query selection can be selection of

specific values of all fields. For example, in case of car
domain (make=”maruti”, model=”alto”, city =”New Delhi”)
is selected and then this query is submitted. This kind of
input gives us very accurate result. But this needs all
combinations to be done prior to submission and there can
be million of such combinations. Because we are dealing
with Query interfaces that have multiple attributes and each
attribute contains large number of values. So, this would be
tiresome task.

Query selection with mandatory field:
Third type of query selection can be selection of only

mandatory field. It is observed that most of the sites have
one compulsory field that should be selected and if values
of this field are filled and submitted, it will give us the
whole database and this retrieved database can be used for
later searching. To maintain the uniformity, same field is
selected in all local interfaces for submission. The selected
field should be field which is seen as mandatory field in
most of the sites.
7.2 Architecture for data extraction and integration
approach:

An interface in integrated form would provide uniform
access to the data sources of a given domain of interest.
Because some sites have restriction over the inputs, we
cannot submit the blank form. So, Crawler submits the
values of mandatory field and extracts the results.
Mandatory field is selected and all the option values are
filled to Global Interface which is formed by schema
matching of all the local interfaces. These values are now
submitted to local interfaces of all sites and results are then
extracted. Every local site will send its result into local
database (table). Now, the large repository will be made to
fetch all the data from local databases and make it global.

In HTML, tables are defined with the <table> tag. A
table is divided into rows (with the <tr> tag), and each row
is divided into data cells (with the <td> tag). td stands for

Manoj D. Swami et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (3) , 2013, 533-537

www.ijcsit.com 535

"table data," and holds the content of a data cell. The data
stored in backend databases is in structured form (table
form). So, we can extract the table data from the database
by looking at the tags. So, we will extract results which lies
inside the <tr>….</tr> tags and all the rows are extracted
which lies inside, <td>….</td>
7.2.1 Removing Duplicate Records:

Data is extracted from all the local databases by
submitting same query to respective local interfaces.
However, it is very much possible that many of these sites
contain same results or same tuples. Hence, data repository
should be made in such a way that duplicate records are
removed while merging. To remove duplicate records, Sql
query is fired and all the distinct tuples are inserted into
data repository as shown below in fig 9. Sql query is shown
below.

insert into table3 select * from table1 union select * from
table2;

Fig 7.1: Architecture for data extraction and integration

7.2.2 Query Formation:

One template is made for construction of query. When
user gives the keyword in search box of the search engine,
Search engine responds with the Global search interface
form for specific domain which contains certain attributes
and will be filled by the user. If it is partially filled, then it
will be filled with all the permitted values. SQL query is
made automatically using attribute-value pairs in global
interface by query generator. This query is fired on data
repository as shown below.

Select * from from table3 Where a1=’x1’ and a2=’x2’
and a3=’x3’;

Where a1, a2 ,…. are the attributes and x1, x2, x3 are the
values filled in the form.

VIII. CONCLUSIONS

In this paper, querying the deep web for web database
sources has been discussed. Such a system contains three
components, Interface integration, Query formulation and
Result interpretation.

Interface integration produces a unified interface over
the query interface of the web databases from a single
domain such as airline booking and analyzes the different
web pages.

Query formulation involves schema integration and
formulates the query to be sent to the various web-
databases sources.

Result interpretation extracts the page results from
different web-databases sources after query submission and
then merges the data into a global consolidated result. The
discussion in this paper concentrated on the Result
component of Deep Web query. Once the query to the
Deep Web is submitted, the system must find the relevant
fields of records and match them to fields of the global
schema, then extract field values into a repository and then
display as an integrated result. In addition problems to
handle include duplication in the results; the system must
provide a mechanism of handling duplications and errors
before integrating the result into global consolidated result.
In the case of a missing field error, user intervention is
required.

REFERENCES
[1] Stephen W. Liddle, David W. Embley, Del T. Scott and Sai Ho Yau.

Extracting Data behind Web Forms; Proceedings of the 28th VLDB
Conference, pp. 2-11, Hong Kong, China, 2002

[2] D.M. Campbell, W.R. Chen, and R.D. Smith. Copy detection
system for digital documents. In Proceedings of the IEEE Advances
in Digital Libraries (ADL 2000), pages 78-88, Washington, DC,
May 2000

[3] S.Raghavan and H. Garcia-Molina. Crawling the hidden Web. In
Proceedings of the 27th International Conference on Very Large
Data Bases (VLDB), Pages: 129 - 138, Rome, Italy, September
2001.

[4] S.Raghavan and H. Garcia-Molina. Crawling the hidden Web.
Technical Report 2000- 36, Computer Science Department,
Stanford University, December 2000. Available at
http://dbpubs.stanford.edu/pub/2000-36.[Thursday 17th July 2007]

[5] A. Arasu and H. Garcia-Molina. Extracting structured data from
web pages. In Proceedings of the ACM SIGMOD Conference on
Management of Data, pages: 337 – 348, year of publication: 2003

[6] Web Group, Deep Web data Integration, Dataspaces, WAMDM lab,
Institute of Data and Knowledge.
http://idke.ruc.edu.cn/projects/web.htm [Monday 12th May 2008
10h30]

[7] Bin he and Kevin Chen-Chuan Chang. Automatic Complex Schema
Matching Across Web Query Interfaces: A Correlation Mining
Approach, pages: 346 – 395. University of Illinois at Urbana-
Champaign Year of Publication: 2006, ISSN: 0362-5915.

[8] Wensheng Wu, AnHai Doan and Clement Yu. WebIQ: Learning
from the Web to Match Deep-Web Query Interfaces. 22nd
International Conference on Data Engineering (ICDE’06), pp.44,
April 3-7, 2006. University of Illinois, USA

[9] Wu, W., Yu, C., Doan, A. and Meng, W. 2004. An Interactive
Clustering-based Approach to Integrating Source Query Interfaces
on the Deep Web. Proceedings of the 2004 ACM SIGMOD
international conference, pages: 95 – 106, year of Publication: 2004.

[10] Wu, P., Wen, J., Liu, H. and Ma, W. Query Selection Techniques
for Efficient Crawling of Structured Web Sources. Available online:
http://research.microsoft.com/~jrwen/jrwen_files/publications/Deep
WebCrawling.PDF. [2 May 2008 18h45]

[11] Qiu, J., Shao, F., Zatsman, M., and Shanmugasundaram, J. Index
Structures for Querying the Deep Web. International Workshop on
the Web and Databases (WebDB) San Diego, California, June12-13,
2003.

[12] He, B, Zhang, Z, Chang, KC. MetaQuerier: Querying Structured
Web Sources On-the-fly. Proceedings of the 2005 ACM SIGMOD
international conference on Management of data, pages: 927 – 929,
year of Publication: 2005. University of Illinois, USA.

[13] Myllymaki, J. Effective Web Data Extraction with Standard XML
Technologies Proceedings of the 10th international conference on
World Wide Web, pages: 689 – 696, year of Publication: 2001.
Hong Kong, Hong Kong.

[14] LIU Wei (1976-), Male, Ph. D. candidate, research direction: Web
data integration

Manoj D. Swami et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (3) , 2013, 533-537

www.ijcsit.com 536

http://www.springerlink.com/content/t2322q344kv405l5/ [Monday
14th July 2008 18h44]

[15] Maurizio Lenzerini. Data Integration: A theoretical Perspective.
Proceedings of the twentyfirst ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages: 233 - 246,
year of Publication: 2002. Università di Roma La Sapienza, Via
Salaria 113, I-00198 Roma, Italy.

[16] A. Y. Halevy. Answering queries using views: A survey. Very
Large Database J., 10(4):270–294, 2001.

[17] R. Hull. Managing semantic heterogeneity in databases: A
theoretical perspective. In Proc. of the 16th ACM SIGACT
SIGMOD SIGART Symp. On Principles of Database Systems
(PODS’97), 1997.

Manoj D. Swami et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (3) , 2013, 533-537

www.ijcsit.com 537

